Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Gene Ther ; 30(9): 1227-1233, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296315

RESUMO

Although it can promote effector T-cell function, the summative effect of interleukin-10 (IL-10) in the tumor microenvironment (TME) appears to be suppressive; therefore, blocking this critical regulatory cytokine has therapeutic potential to enhance antitumor immune function. As macrophages efficiently localize to the TME, we hypothesized that they could be used as a delivery vehicle for drugs designed to block this pathway. To test our hypothesis, we created and evaluated genetically engineered macrophages (GEMs) that produce an IL-10-blocking antibody (αIL-10). Healthy donor human peripheral blood mononuclear cells were differentiated and transduced with a novel lentivirus (LV) encoding BT-063, a humanized αIL-10 antibody. The efficacy of αIL-10 GEMs was assessed in human gastrointestinal tumor slice culture models developed from resected specimens of pancreatic ductal adenocarcinoma primary tumors and colorectal cancer liver metastases. LV transduction led to sustained production of BT-063 by αIL-10 GEMs for at least 21 days. Transduction did not alter GEM phenotype as evaluated by flow cytometry, but αIL-10 GEMs produced measurable quantities of BT-063 in the TME that was associated with an ~5-fold higher rate of tumor cell apoptosis than control.


Assuntos
Neoplasias Gastrointestinais , Neoplasias Pancreáticas , Humanos , Apoptose/genética , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/terapia , Interleucina-10/antagonistas & inibidores , Interleucina-10/imunologia , Leucócitos Mononucleares , Macrófagos/patologia , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/tratamento farmacológico , Microambiente Tumoral/genética
2.
Adv Healthc Mater ; 11(9): e2101944, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34889072

RESUMO

Engineered immune cells are an exciting therapeutic modality, which survey and attack tumors. Backpacking strategies exploit cell targeting capabilities for delivery of drugs to combat tumors and their immune-suppressive environments. Here, a new platform for arming cell therapeutics through dual receptor and polymeric prodrug engineering is developed. Macrophage and T cell therapeutics are engineered to express a bioorthogonal single chain variable fragment receptor. The receptor binds a fluorescein ligand that directs cell loading with ligand-tagged polymeric prodrugs, termed "drugamers." The fluorescein ligand facilitates stable binding of drugamer to engineered macrophages over 10 days with 80% surface retention. Drugamers also incorporate prodrug monomers of the phosphoinositide-3-kinase inhibitor, PI-103. The extended release of PI-103 from the drugamer sustains antiproliferative activity against a glioblastoma cell line compared to the parent drug. The versatility and modularity of this cell arming system is demonstrated by loading T cells with a second fluorescein-drugamer. This drugamer incorporates a small molecule estrogen analog, CMP8, which stabilizes a degron-tagged transgene to provide temporal regulation of protein activity in engineered T cells. These results demonstrate that this bioorthogonal receptor and drugamer system can be used to arm multiple immune cell classes with both antitumor and transgene-activating small molecule prodrugs.


Assuntos
Neoplasias , Pró-Fármacos , Fluoresceínas , Humanos , Ligantes , Polímeros/química , Pró-Fármacos/química , Pró-Fármacos/farmacologia
3.
J Immunother Cancer ; 8(2)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33115946

RESUMO

BACKGROUND: Though currently approved immunotherapies, including chimeric antigen receptor T cells and checkpoint blockade antibodies, have been successfully used to treat hematological and some solid tumor cancers, many solid tumors remain resistant to these modes of treatment. In solid tumors, the development of effective antitumor immune responses is hampered by restricted immune cell infiltration and an immunosuppressive tumor microenvironment (TME). An immunotherapy that infiltrates and persists in the solid TME, while providing local, stable levels of therapeutic to activate or reinvigorate antitumor immunity could overcome these challenges faced by current immunotherapies. METHODS: Using lentivirus-driven engineering, we programmed human and murine macrophages to express therapeutic payloads, including Interleukin (IL)-12. In vitro coculture studies were used to evaluate the effect of genetically engineered macrophages (GEMs) secreting IL-12 on T cells and on the GEMs themselves. The effects of IL-12 GEMs on gene expression profiles within the TME and tumor burden were evaluated in syngeneic mouse models of glioblastoma and melanoma and in human tumor slices isolated from patients with advanced gastrointestinal malignancies. RESULTS: Here, we present a cellular immunotherapy platform using lentivirus-driven genetic engineering of human and mouse macrophages to constitutively express proteins, including secreted cytokines and full-length checkpoint antibodies, as well as cytoplasmic and surface proteins that overcomes these barriers. GEMs traffic to, persist in, and express lentiviral payloads in xenograft mouse models of glioblastoma, and express a non-signaling truncated CD19 surface protein for elimination. IL-12-secreting GEMs activated T cells and induced interferon-gamma (IFNγ) in vitro and slowed tumor growth resulting in extended survival in vivo. In a syngeneic glioblastoma model, IFNγ signaling cascades were also observed in mice treated with mouse bone-marrow-derived GEMs secreting murine IL-12. These findings were reproduced in ex vivo tumor slices comprised of intact MEs. In this setting, IL-12 GEMs induced tumor cell death, chemokines and IFNγ-stimulated genes and proteins. CONCLUSIONS: Our data demonstrate that GEMs can precisely deliver titratable doses of therapeutic proteins to the TME to improve safety, tissue penetrance, targeted delivery and pharmacokinetics.


Assuntos
Engenharia Genética/métodos , Imunoterapia/métodos , Macrófagos/metabolismo , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
4.
J Immunol Methods ; 455: 71-79, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29408707

RESUMO

The liver is the central metabolic organ in the human body, and also plays an essential role in innate and adaptive immunity. While mouse models offer significant insights into immune-inflammatory liver disease, human immunology differs in important respects. It is not easy to address those differences experimentally. Therefore, to improve the understanding of human liver immunobiology and pathology, we have established precision-cut human liver slices to study innate immunity in human tissue. Human liver slices collected from resected livers could be maintained in ex vivo culture over a two-week period. Although an acute inflammatory response accompanied by signs of tissue repair was observed in liver tissue following slicing, the expression of many immune genes stabilized after day 4 and remained stable until day 15. Remarkably, histological evidence of pre-existing liver diseases was preserved in the slices for up to 7 days. Following 7 days of culture, exposure of liver slices to the toll-like receptor (TLR) ligands, TLR3 ligand Poly-I:C and TLR4 ligand LPS, resulted in a robust activation of acute inflammation and cytokine genes. Moreover, Poly-I:C treatment induced a marked antiviral response including increases of interferons IFNB, IL-28B and a group of interferon-stimulated genes. Therefore, precision-cut liver slices emerge as a valuable tool to study human innate immunity.


Assuntos
Inflamação/metabolismo , Fígado/patologia , Técnicas de Cultura de Órgãos/métodos , Técnicas de Cultura de Células , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Interferon beta/metabolismo , Interferons , Interleucinas/metabolismo , Lipopolissacarídeos/imunologia , Fígado/metabolismo , Poli I-C/imunologia , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
5.
Hepatology ; 65(4): 1336-1351, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28120431

RESUMO

Multiple pathways drive the sterile injury response in the liver; however, it is unclear how the type of cells injured or the mechanism of injury activates these pathways. Here, we use a model of selective hepatocyte death to investigate sterile liver injury. In this model, the TIR-domain-containing adaptor-inducing interferon-ß (TRIF) was a central mediator of the resulting intrahepatic inflammatory response that was independent of both upstream Toll-like receptor (TLR) 4 signaling and downstream type I interferon (IFN) signaling. TRIF was required for induction of interleukin (IL)-10, IL-6, and IL-1ß cytokines. Conversely, although induction of C-C motif chemokine ligand (CCL) 2 and C-X-C motif chemokine ligand (CXCL) 1 chemokines and up-regulation of chemokine (Ccl2, Ccl7, Cxcl1, Cxcl2, and Cxcl10) and cell-adhesion (intracellular adhesion molecule 1 and vascular cell adhesion molecule 1) genes involved in myeloid cell recruitment was reduced in a majority of TRIF-/- mice, a subset of TRIF-/- mice showed breakthrough inflammation and the ability to induce these genes and proteins, indicating that redundant pathways exist to respond to hepatocyte death. Furthermore, we found that hepatocytes themselves were the main responders to hepatocyte death, increasing transcription of genes involved in myeloid cell recruitment more than either liver sinusoidal endothelial cells or Kupffer cells. CONCLUSION: Our studies define a TRIF-dependent, TLR4- and type I IFN-independent pathway of sterile liver injury in which hepatocytes are both the targets of damage and the principal responding cell type. (Hepatology 2017;65:1336-1351).


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Hepatócitos/patologia , Interferon beta/genética , Fígado/lesões , Ferimentos e Lesões/fisiopatologia , Doença Aguda , Animais , Morte Celular , Células Cultivadas , Modelos Animais de Doenças , Hepatócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Sensibilidade e Especificidade , Transdução de Sinais , Regulação para Cima , Ferimentos e Lesões/genética
6.
Clin Transl Immunology ; 5(11): e113, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27990288

RESUMO

Noninfectious liver injury causes many acute and chronic liver diseases around the globe, and particularly in developed nations. Bone marrow-derived monocytes infiltrate the damaged liver tissue and are a critical component of the innate immune response that may drive injury resolution or host death in the short term or chronic inflammation, fibrosis and hepatocellular carcinoma in the long term. Monocytes often play dual roles in liver injury-both perpetuating inflammation and promoting resolution of inflammation and fibrosis. Thus, we will address the role that monocytes play in different experimental forms of noninfectious liver injury; considering in particular the importance of the transition from inflammatory Ly6Chi monocytes to pro-resolution Ly6Clo monocyte-derived macrophages and the consequences of this transition for disease progression and resolution.

7.
Methods Mol Biol ; 1325: 3-17, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26450375

RESUMO

Hepatocytes comprise the majority of liver mass and cell number. However, in order to understand liver biology, the non-parenchymal cells (NPCs) must be considered. Herein, a relatively rapid and efficient method for isolating liver NPCs from a mouse is described. Using this method, liver sinusoidal endothelial cells, Kupffer cells, natural killer (NK) and NK-T cells, dendritic cells, CD4+ and CD8+ T cells, and quiescent hepatic stellate cells can be purified. This protocol permits the collection of peripheral blood, intact liver tissue, and hepatocytes, in addition to NPCs. In situ perfusion via the portal vein leads to efficient liver digestion. NPCs are enriched from the resulting single-cell suspension by differential and gradient centrifugation. The NPCs can by analyzed or sorted into highly enriched populations using flow cytometry. The isolated cells are suitable for flow cytometry, protein, and mRNA analyses as well as primary culture.


Assuntos
Separação Celular/métodos , Fígado/citologia , Biologia Molecular/métodos , Animais , Células Dendríticas/citologia , Células Endoteliais/citologia , Células Matadoras Naturais/citologia , Células de Kupffer/citologia , Camundongos
8.
J Immunol ; 194(5): 2268-79, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25646303

RESUMO

The costimulatory molecule CD40 enhances immunity through several distinct roles in T cell activation and T cell interaction with other immune cells. In a mouse model of immunity to liver stage Plasmodium infection, CD40 was critical for the full maturation of liver dendritic cells, accumulation of CD8(+) T cells in the liver, and protective immunity induced by immunization with the Plasmodium yoelii fabb/f(-) genetically attenuated parasite. Using mixed adoptive transfers of polyclonal wild-type and CD40-deficient CD8(+) T cells into wild-type and CD40-deficient hosts, we evaluated the contributions to CD8(+) T cell immunity of CD40 expressed on host tissues including APC, compared with CD40 expressed on the CD8(+) T cells themselves. Most of the effects of CD40 could be accounted for by expression in the T cells' environment, including the accumulation of large numbers of CD8(+) T cells in the livers of immunized mice. Thus, protective immunity generated during immunization with fabb/f(-) was largely dependent on effective APC licensing via CD40 signaling.


Assuntos
Antígenos CD40/imunologia , Linfócitos T CD8-Positivos/imunologia , Fígado/imunologia , Vacinas Antimaláricas/administração & dosagem , Malária/prevenção & controle , Plasmodium yoelii/imunologia , Esporozoítos/imunologia , Transferência Adotiva , Animais , Antígenos CD40/deficiência , Antígenos CD40/genética , Linfócitos T CD8-Positivos/parasitologia , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/transplante , Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Células Dendríticas/patologia , Feminino , Deleção de Genes , Expressão Gênica , Hepatócitos/imunologia , Hepatócitos/parasitologia , Hepatócitos/patologia , Imunidade Inata , Fígado/parasitologia , Fígado/patologia , Ativação Linfocitária , Malária/imunologia , Malária/parasitologia , Malária/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Transdução de Sinais , Esporozoítos/química , Vacinas Atenuadas
9.
Plant Cell ; 22(2): 481-96, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20190077

RESUMO

Plants respond to virus infections by activation of RNA-based silencing, which limits infection at both the single-cell and system levels. Viruses encode RNA silencing suppressor proteins that interfere with this response. Wild-type Arabidopsis thaliana is immune to silencing suppressor (HC-Pro)-deficient Turnip mosaic virus, but immunity was lost in the absence of DICER-LIKE proteins DCL4 and DCL2. Systematic analysis of susceptibility and small RNA formation in Arabidopsis mutants lacking combinations of RNA-dependent RNA polymerase (RDR) and DCL proteins revealed that the vast majority of virus-derived small interfering RNAs (siRNAs) were dependent on DCL4 and RDR1, although full antiviral defense also required DCL2 and RDR6. Among the DCLs, DCL4 was sufficient for antiviral silencing in inoculated leaves, but DCL2 and DCL4 were both involved in silencing in systemic tissues (inflorescences). Basal levels of antiviral RNA silencing and siRNA biogenesis were detected in mutants lacking RDR1, RDR2, and RDR6, indicating an alternate route to form double-stranded RNA that does not depend on the three previously characterized RDR proteins.


Assuntos
Arabidopsis/enzimologia , RNA Polimerases Dirigidas por DNA/metabolismo , Vírus de Plantas/genética , RNA Interferente Pequeno/genética , Ribonuclease III/genética , Arabidopsis/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...